Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 19.201
1.
Sci Signal ; 17(833): eadg5678, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652761

Upon activation, T cells undergo metabolic reprogramming to meet the bioenergetic demands of clonal expansion and effector function. Because dysregulated T cell cytokine production and metabolic phenotypes coexist in chronic inflammatory disease, including rheumatoid arthritis (RA), we investigated whether inflammatory cytokines released by differentiating T cells amplified their metabolic changes. We found that tumor necrosis factor-α (TNF-α) released by human naïve CD4+ T cells upon activation stimulated the expression of a metabolic transcriptome and increased glycolysis, amino acid uptake, mitochondrial oxidation of glutamine, and mitochondrial biogenesis. The effects of TNF-α were mediated by activation of Akt-mTOR signaling by the kinase ITK and did not require the NF-κB pathway. TNF-α stimulated the differentiation of naïve cells into proinflammatory T helper 1 (TH1) and TH17 cells, but not that of regulatory T cells. CD4+ T cells from patients with RA showed increased TNF-α production and consequent Akt phosphorylation upon activation. These cells also exhibited increased mitochondrial mass, particularly within proinflammatory T cell subsets implicated in disease. Together, these findings suggest that T cell-derived TNF-α drives their metabolic reprogramming by promoting signaling through ITK, Akt, and mTOR, which is dysregulated in autoinflammatory disease.


Arthritis, Rheumatoid , CD4-Positive T-Lymphocytes , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Tumor Necrosis Factor-alpha , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/genetics , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Tumor Necrosis Factor-alpha/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Mitochondria/metabolism , 60645
2.
J Nanobiotechnology ; 22(1): 201, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38659058

The utilization of extracellular vesicles (EV) in immunotherapy, aiming at suppressing peripheral immune cells responsible for inflammation, has demonstrated significant efficacy in treating various inflammatory diseases. However, the clinical application of EV has faced challenges due to their inadequate targeting ability. In addition, most of the circulating EV would be cleared by the liver, resulting in a short biological half-life after systemic administration. Inspired by the natural microvesicles (MV, as a subset of large size EV) are originated and shed from the plasma membrane, we developed the immunosuppressive MV-mimetic (MVM) from endotoxin tolerant dendritic cells (DC) by a straightforward and effective extrusion approach, in which DC surface proteins were inherited for providing the homing ability to the spleen, while αCD3 antibodies were conjugated to the MVM membranes for specific targeting of T cells. The engineered MVM carried a large number of bioactive cargos from the parental cells, which exhibited a remarkable ability to promote the induction of regulatory T cells (Treg) and polarization of anti-inflammatory M2 macrophages. Mechanistically, the elevated Treg level by MVM was mediated due to the upregulation of miR-155-3p. Furthermore, it was observed that systemic and local immunosuppression was induced by MVM in models of sepsis and rheumatoid arthritis through the improvement of Treg and M2 macrophages. These findings reveal a promising cell-free strategy for managing inflammatory responses to infections or tissue injury, thereby maintaining immune homeostasis.


Cell-Derived Microparticles , Dendritic Cells , Inflammation , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Mice , Inflammation/drug therapy , Cell-Derived Microparticles/metabolism , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Extracellular Vesicles , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Sepsis/immunology , Sepsis/drug therapy , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Humans , Immunotherapy/methods
3.
Front Immunol ; 15: 1385085, 2024.
Article En | MEDLINE | ID: mdl-38650931

The biosynthesis of C-reactive protein (CRP) in the liver is increased in inflammatory diseases including rheumatoid arthritis. Previously published data suggest a protective function of CRP in arthritis; however, the mechanism of action of CRP remains undefined. The aim of this study was to evaluate the effects of human CRP on the development of collagen-induced arthritis (CIA) in mice which is an animal model of autoimmune inflammatory arthritis. Two CRP species were employed: wild-type CRP which binds to aggregated IgG at acidic pH and a CRP mutant which binds to aggregated IgG at physiological pH. Ten CRP injections were given on alternate days during the development of CIA. Both wild-type and mutant CRP reduced the incidence of CIA, that is, reduced the number of mice developing CIA; however, CRP did not affect the severity of the disease in arthritic mice. The serum levels of IL-17, IL-6, TNF-α, IL-10, IL-2 and IL-1ß were measured: both wild-type and mutant CRP decreased the level of IL-17 and IL-6 but not of TNF-α, IL-10, IL-2 and IL-1ß. These data suggest that CRP recognizes and binds to immune complexes, although it was not clear whether CRP functioned in its native pentameric or in its structurally altered pentameric form in the CIA model. Consequently, ligand-complexed CRP, through an as-yet undefined mechanism, directly or indirectly, inhibits the production of IL-17 and eventually protects against the initiation of the development of arthritis. The data also suggest that IL-17, not TNF-α, is critical for the development of autoimmune inflammatory arthritis.


Arthritis, Experimental , C-Reactive Protein , Interleukin-17 , Tumor Necrosis Factor-alpha , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/blood , C-Reactive Protein/metabolism , Interleukin-17/blood , Mice , Tumor Necrosis Factor-alpha/blood , Humans , Male , Mice, Inbred DBA , Disease Models, Animal , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/blood
4.
Front Immunol ; 15: 1383110, 2024.
Article En | MEDLINE | ID: mdl-38650930

Exhausted CD8 T cells (TEX) are associated with worse outcome in cancer yet better outcome in autoimmunity. Building on our past findings of increased TIGIT+KLRG1+ TEX with teplizumab therapy in type 1 diabetes (T1D), in the absence of treatment we found that the frequency of TIGIT+KLRG1+ TEX is stable within an individual but differs across individuals in both T1D and healthy control (HC) cohorts. This TIGIT+KLRG1+ CD8 TEX population shares an exhaustion-associated EOMES gene signature in HC, T1D, rheumatoid arthritis (RA), and cancer subjects, expresses multiple inhibitory receptors, and is hyporesponsive in vitro, together suggesting co-expression of TIGIT and KLRG1 may broadly define human peripheral exhausted cells. In HC and RA subjects, lower levels of EOMES transcriptional modules and frequency of TIGIT+KLRG1+ TEX were associated with RA HLA risk alleles (DR0401, 0404, 0405, 0408, 1001) even when considering disease status and cytomegalovirus (CMV) seropositivity. Moreover, the frequency of TIGIT+KLRG1+ TEX was significantly increased in RA HLA risk but not non-risk subjects treated with abatacept (CTLA4Ig). The DR4 association and selective modulation with abatacept suggests that therapeutic modulation of TEX may be more effective in DR4 subjects and TEX may be indirectly influenced by cellular interactions that are blocked by abatacept.


Abatacept , Alleles , Arthritis, Rheumatoid , CD8-Positive T-Lymphocytes , Receptors, Immunologic , Humans , Abatacept/therapeutic use , Abatacept/pharmacology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/genetics , Male , Female , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , Adult , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , HLA Antigens/genetics , HLA Antigens/immunology , Middle Aged , Antirheumatic Agents/therapeutic use , Genetic Predisposition to Disease , T-Cell Exhaustion
5.
Chin J Nat Med ; 22(4): 341-355, 2024 Apr.
Article En | MEDLINE | ID: mdl-38658097

Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by persistent synovial inflammation and joint degradation, posing challenges in the development of effective treatments. Nuciferine, an alkaloid found in lotus leaf, has shown promising anti-inflammatory and anti-tumor effects, yet its efficacy in RA treatment remains unexplored. This study investigated the antiproliferative effects of nuciferine on the MH7A cell line, a human RA-derived fibroblast-like synoviocyte, revealing its ability to inhibit cell proliferation, promote apoptosis, induce apoptosis, and cause G1/S phase arrest. Additionally, nuciferine significantly reduced the migration and invasion capabilities of MH7A cells. The therapeutic potential of nuciferine was further evaluated in a collagen-induced arthritis (CIA) rat model, where it markedly alleviated joint swelling, synovial hyperplasia, cartilage injury, and inflammatory infiltration. Nuciferine also improved collagen-induced bone erosion, decreased pro-inflammatory cytokines and serum immunoglobulins (IgG, IgG1, IgG2a), and restored the balance between T helper (Th) 17 and regulatory T cells in the spleen of CIA rats. These results indicate that nuciferine may offer therapeutic advantages for RA by decreasing the proliferation and invasiveness of FLS cells and correcting the Th17/Treg cell imbalance in CIA rats.


Aporphines , Cell Proliferation , Synoviocytes , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Cell Proliferation/drug effects , Synoviocytes/drug effects , Rats , Humans , Th17 Cells/drug effects , Th17 Cells/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Aporphines/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Male , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Fibroblasts/drug effects , Collagen , Apoptosis/drug effects , Cell Line
6.
JMIR Res Protoc ; 13: e55829, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38501508

BACKGROUND: Rheumatic and musculoskeletal diseases (RMDs) are chronic diseases that may alternate between asymptomatic periods and flares. These conditions require complex treatments and close monitoring by rheumatologists to mitigate their effects and improve the patient's quality of life. Often, delays in outpatient consultations or the patient's difficulties in keeping appointments make such close follow-up challenging. For this reason, it is very important to have open communication between patients and health professionals. In this context, implementing telemonitoring in the field of rheumatology has great potential, as it can facilitate the close monitoring of patients with RMDs. The use of these tools helps patients self-manage certain aspects of their disease. This could result in fewer visits to emergency departments and consultations, as well as enable better therapeutic compliance and identification of issues that would otherwise go unnoticed. OBJECTIVE: The main objective of this study is to evaluate the implementation of a hybrid care model called the mixed attention model (MAM) in clinical practice and determine whether its implementation improves clinical outcomes compared to conventional follow-up. METHODS: This is a multicenter prospective observational study involving 360 patients with rheumatoid arthritis (RA) and spondylarthritis (SpA) from 5 Spanish hospitals. The patients will be followed up by the MAM protocol, which is a care model that incorporates a digital tool consisting of a mobile app that patients can use at home and professionals can review asynchronously to detect incidents and follow patients' clinical evolution between face-to-face visits. Another group of patients, whose follow-up will be conducted in accordance with a traditional face-to-face care model, will be assessed as the control group. Sociodemographic characteristics, treatments, laboratory parameters, assessment of tender and swollen joints, visual analog scale for pain, and electronic patient-reported outcome (ePRO) reports will be collected for all participants. In the MAM group, these items will be self-assessed via both the mobile app and during face-to-face visits with the rheumatologist, who will do the same for patients included in the traditional care model. The patients will be able to report any incidence related to their disease or treatment through the mobile app. RESULTS: Participant recruitment began in March 2024 and will continue until December 2024. The follow-up period will be extended by 12 months for all patients. Data collection and analysis are scheduled for completion in December 2025. CONCLUSIONS: This paper aims to provide a detailed description of the development and implementation of a digital solution, specifically an MAM. The goal is to achieve significant economic and psychosocial impact within our health care system by enhancing control over RMDs. TRIAL REGISTRATION: ClinicalTrials.gov NCT06273306; https://clinicaltrials.gov/ct2/show/NCT06273306. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/55829.


Telemedicine , Humans , Telemedicine/methods , Prospective Studies , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/therapy , Spain , Male , Female
7.
Nature ; 623(7987): 616-624, 2023 Nov.
Article En | MEDLINE | ID: mdl-37938773

Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.


Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Cytokines/metabolism , Inflammation/complications , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Synovial Membrane/pathology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , Genetic Predisposition to Disease/genetics , Phenotype , Single-Cell Gene Expression Analysis
8.
Reumatol. clín. (Barc.) ; 19(9): 515-526, Nov. 2023. tab, ilus
Article Es | IBECS | ID: ibc-226607

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by the presence of autoantibodies. Research on the pathogenic mechanisms involved in systemic autoimmune diseases has largely focused on the involvement of the adaptive immune system with dysregulated responses of T and B cells. However, in recent years, there is increasing evidence of the significant role played by the innate immune system, particularly neutrophils, in these diseases, particularly in RA. Neutrophil extracellular traps (NETs) are extracellular structures composed of remodeled and concentrated chromatin with DNA, histones, and neutrophil proteins, and were first described in 2004. It has been studied that NETs may play a pathogenic role in RA and could be a source of autoantigens, increasing the immune response in the form of autoantibodies in this disease. The possible role of NETs and other markers of neutrophil activation as biomarkers of activity in RA and other immune-mediated diseases has also been studied.This article reviews the role of NETs in RA. It discusses the role of neutrophils and the latest advances in NETs, especially their involvement in autoimmune phenomena in RA. Finally, a literature review is conducted on the determination of NETs in peripheral blood and their relationship as a biomarker of RA activity, as well as their potential role in disease monitoring.(AU)


La artritis reumatoide (AR) es una enfermedad autoinmune sistémica caracterizada por la presencia de autoanticuerpos. Las investigaciones sobre los mecanismos patogénicos implicados en las enfermedades autoinmunes sistémicas se centran en gran medida en la participación del sistema inmunitario adaptativo con las respuestas desreguladas de las células T y B. Sin embargo, en los últimos años, ha aumentado la evidencia del importante papel que juega el sistema inmunitario innato, en particular los neutrófilos, en estas enfermedades, particularmente en la AR. Las trampas extracelulares de neutrófilos (NET) son estructuras extracelulares compuestas por cromatina remodelada y concentrada con ADN, histonas y proteínas de los neutrófilos y son un mecanismo de acción de los neutrófilos que se describió por primera vez en 2004. Se ha estudiado que pueden desempeñar un papel patogénico en la AR y podrían ser fuente de autoantígenos e incrementar la respuesta inmunológica en forma de autoanticuerpos en esta enfermedad. También se ha estudiado el posible papel de las NET y otros marcadores de activación neutrofílica como biomarcadores de actividad en la AR y otras enfermedades inmunomediadas.En el presente artículo se revisa el papel de las NET en la AR. Se revisa el papel del neutrófilo y los últimos avances en NET, especialmente en su participación en los fenómenos de autoinmunidad en la AR. Por último, se hace una revisión de la literatura sobre la determinación de NET en sangre periférica y su relación como biomarcador de actividad de la AR y su posible papel para monitorizar la enfermedad.(AU)


Humans , Arthritis, Rheumatoid/immunology , Neutrophils , Extracellular Traps , Autoimmunity , Rheumatology , Rheumatic Diseases , Arthritis, Rheumatoid/pathology , Biomarkers
9.
J Biol Chem ; 299(11): 105320, 2023 11.
Article En | MEDLINE | ID: mdl-37802315

Autoantibodies to malondialdehyde (MDA) proteins constitute a subset of anti-modified protein autoantibodies in rheumatoid arthritis (RA), which is distinct from citrulline reactivity. Serum anti-MDA IgG levels are commonly elevated in RA and correlate with disease activity, CRP, IL6, and TNF-α. MDA is an oxidation-associated reactive aldehyde that together with acetaldehyde mediates formation of various immunogenic amino acid adducts including linear MDA-lysine, fluorescent malondialdehyde acetaldehyde (MAA)-lysine, and intramolecular cross-linking. We used single-cell cloning, generation of recombinant antibodies (n = 356 from 25 donors), and antigen-screening to investigate the presence of class-switched MDA/MAA+ B cells in RA synovium, bone marrow, and bronchoalveolar lavage. Anti-MDA/MAA+ B cells were found in bone marrow plasma cells of late disease and in the lung of both early disease and risk-individuals and in different B cell subsets (memory, double negative B cells). These were compared with previously identified anti-MDA/MAA from synovial memory and plasma cells. Seven out of eight clones carried somatic hypermutations and all bound MDA/MAA-lysine independently of protein backbone. However, clones with somatic hypermutations targeted MAA cross-linked structures rather than MDA- or MAA-hapten, while the germline-encoded synovial clone instead bound linear MDA-lysine in proteins and peptides. Binding patterns were maintained in germline converted clones. Affinity purification of polyclonal anti-MDA/MAA from patient serum revealed higher proportion of anti-MAA versus anti-MDA compared to healthy controls. In conclusion, IgG anti-MDA/MAA show distinct targeting of different molecular structures. Anti-MAA IgG has been shown to promote bone loss and osteoclastogenesis in vivo and may contribute to RA pathogenesis.


Arthritis, Rheumatoid , B-Lymphocytes , Humans , Acetaldehyde/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Autoantibodies , Bone Marrow/metabolism , Immunoglobulin G/metabolism , Lung/metabolism , Lysine/metabolism , Malondialdehyde/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Autoimmunity
10.
Eur Rev Med Pharmacol Sci ; 27(16): 7416-7430, 2023 08.
Article En | MEDLINE | ID: mdl-37667918

OBJECTIVE: The current study considered assessing the role of miRNA-155 and miRNA-24 in collagen-induced rheumatoid arthritis (RA) in rats' temporomandibular joint (TMJ). Their role in histological aggressiveness of the disease and therapy response to glycogen synthase kinase (GSK) inhibitor 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) will be studied. MATERIALS AND METHODS: Rats were randomly distributed to four groups (8 rats/group): group I negative control, group II collagen-induced rheumatoid arthritis (CIA), group III Control+TDZD-8 treated group, and group IV CIA+TDZD-8 treated group. Then were euthanized 42 days after the start of the experiment. H&E staining, Masson trichrome staining, and immunohistochemical antibodies against S100 were performed. qRT-PCR of miRNA-155 and miRNA-24 were done for frozen synovial tissues. RESULTS: Histological analysis showed that the most affected structure in induced rheumatoid arthritis of TMJ is the articular disc, condylar head, and subchondral bone. Combined treatment with TDZD-8 improved histological status in the joint. Masson's trichrome (MTC) histochemical staining revealed disarrangement of collagen fibers and adherence between the articular disc and condylar cartilage. Meanwhile, the morphology and collagen composition of the disc and condyle in CIA+ TDZD-8 were similar to those of healthy tissues. Immunohistochemical analysis for S100A4 revealed increased immunoreactivity staining in the CIA group. The immunoreactivity was significantly decreased in CIA+ TDZD-8 treated group. TDZD-8 significantly decreased the levels of miRNA-155 and miRNA-24 in synovial tissue. CONCLUSIONS: Our results reveal for the first-time correlation of miRNA-155 and miRNA-24 that might be implicated in the onset of TMJ RA. Consequently, the treatment of CIA with GSK inhibitor (TDZD-8) yields encouraging results. We predicted the TDZD-8 might protect against CIA by suppressing miRNA-155, miRNA-24, and S100A4 protein levels.


Arthritis, Rheumatoid , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Collagen/toxicity , Animals , Rats , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
11.
Immunity ; 56(5): 1046-1063.e7, 2023 05 09.
Article En | MEDLINE | ID: mdl-36948194

Immunoglobulin G (IgG) antibodies are major drivers of inflammation during infectious and autoimmune diseases. In pooled serum IgG (IVIg), however, antibodies have a potent immunomodulatory and anti-inflammatory activity, but how this is mediated is unclear. We studied IgG-dependent initiation of resolution of inflammation in cytokine- and autoantibody-driven models of rheumatoid arthritis and found IVIg sialylation inhibited joint inflammation, whereas inhibition of osteoclastogenesis was sialic acid independent. Instead, IVIg-dependent inhibition of osteoclastogenesis was abrogated in mice lacking receptors Dectin-1 or FcγRIIb. Atomistic molecular dynamics simulations and super-resolution microscopy revealed that Dectin-1 promoted FcγRIIb membrane conformations that allowed productive IgG binding and enhanced interactions with mouse and human IgG subclasses. IVIg reprogrammed monocytes via FcγRIIb-dependent signaling that required Dectin-1. Our data identify a pathogen-independent function of Dectin-1 as a co-inhibitory checkpoint for IgG-dependent inhibition of mouse and human osteoclastogenesis. These findings may have implications for therapeutic targeting of autoantibody and cytokine-driven inflammation.


Arthritis, Rheumatoid , Immunoglobulins, Intravenous , Lectins, C-Type , Receptors, IgG , Animals , Humans , Mice , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Cell Membrane/metabolism , Immunoglobulins, Intravenous/administration & dosage , Lectins, C-Type/metabolism , Mice, Inbred C57BL , Osteoclasts/metabolism , Protein Processing, Post-Translational , Receptors, IgG/metabolism
12.
Sci Rep ; 13(1): 1304, 2023 01 24.
Article En | MEDLINE | ID: mdl-36693893

The aim of this study was to clarify the effect of climatic environment on the immunological features of rheumatoid arthritis (RA). Blood samples were collected from patients with RA and healthy controls (HCs), matched by age and sex, living in two locations, Tsukuba and Karuizawa, which differ in their altitude and average air temperature and atmospheric pressure. Analysis of peripheral blood mononuclear cells (PBMCs) revealed that the proportion of T and B cell subpopulations in HCs and RA patients were significantly different between two sites. Inverse probability weighting adjustment with propensity scores was used to control for potential confounding factors. The results revealed that, in comparison with RA patients in Tsukuba, those in Karuizawa showed a significant increase in cTh1, cTfh1, and Tph cells, and significant decrease in cTh17, cTh17.1, and CD8+ Treg in T cell subpopulations, and a significant increase in DNB, DN1, DN2, and class-switched memory B cells, and a significant decrease in unswitched memory B, naïve B cells, and ABCs in B cell subpopulations. Our results suggest the possibility that climatic environment might have an effect on immune cell proportion and function, and be related to the pathogenic mechanism of RA.


Arthritis, Rheumatoid , Environment , Leukocytes, Mononuclear , Humans , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/physiopathology , B-Lymphocytes/immunology , Leukocytes, Mononuclear/immunology , T-Lymphocytes/immunology
13.
Semin Arthritis Rheum ; 58: 152131, 2023 02.
Article En | MEDLINE | ID: mdl-36527929

OBJECTIVES: To compare the magnitude of cognitive impairment against age-expected levels across the immune mediated inflammatory diseases (IMIDs: systemic lupus erythematosus [SLE], rheumatoid arthritis [RA], axial spondyloarthritis [axSpA], psoriatic arthritis [PsA], psoriasis [PsO]). METHODS: A pre-defined search strategy was implemented in Medline, Embase and Psychinfo on 29/05/2021. Inclusion criteria were: (i) observational studies of an IMID, (ii) healthy control comparison, (iii) measuring cognitive ability (overall, memory, complex attention/executive function, language/verbal fluency), and (iv) sufficient data for meta-analysis. Standardised mean differences (SMD) in cognitive assessments between IMIDs and controls were pooled using random-effects meta-analysis. IMIDs were compared using meta-regression. RESULTS: In total, 65 IMID groups were included (SLE: 39, RA: 19, axSpA: 1, PsA: 2 PsO: 4), comprising 3141 people with IMIDs and 9333 controls. People with IMIDs had impairments in overall cognition (SMD: -0.57 [95% CI -0.70, -0.43]), complex attention/executive function (SMD -0.57 [95% CI -0.69, -0.44]), memory (SMD -0.55 [95% CI -0.68, -0.43]) and language/verbal fluency (SMD -0.51 [95% CI -0.68, -0.34]). People with RA and people with SLE had similar magnitudes of cognitive impairment in relation to age-expected levels. People with neuropsychiatric SLE had larger impairment in overall cognition compared with RA. CONCLUSIONS: People with IMIDs have moderate impairments across a range of cognitive domains. People with RA and SLE have similar magnitudes of impairment against their respective age-expected levels, calling for greater recognition of cognitive impairment in both conditions. To further understand cognition in the IMIDs, more large-scale, longitudinal studies are needed.


Arthritis , Cognitive Dysfunction , Lupus Erythematosus, Systemic , Psoriasis , Humans , Arthritis, Psoriatic/complications , Arthritis, Psoriatic/immunology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/immunology , Cognition , Cognitive Dysfunction/etiology , Cognitive Dysfunction/immunology , Lupus Erythematosus, Systemic/complications , Axial Spondyloarthritis/complications , Axial Spondyloarthritis/immunology , Arthritis/complications , Arthritis/immunology , Inflammation/complications , Inflammation/immunology
14.
Int Immunopharmacol ; 113(Pt A): 109271, 2022 Dec.
Article En | MEDLINE | ID: mdl-36461590

G-protein coupled receptor (GPCR) kinases (GRKs) and hypoxia-inducible factor-1α (HIF-1α) play key roles in rheumatoid arthritis (RA). Several studies have demonstrated that HIF-1α expression is positively regulated by GRK2, suggesting its posttranscriptional effects on HIF-1α. In this study, we review the role of HIF-1α and GRK2 in RA pathophysiology, focusing on their proinflammatory roles in immune cells and fibroblast-like synoviocytes (FLS).We then introduce several drugs that inhibit GRK2 and HIF-1α, and briefly outline their molecular mechanisms. We conclude by presenting gaps in knowledge and our prospects for the pharmacological potential of targeting these proteins and the relevant downstream signaling pathways.Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and HIF-1α in RA.


Arthritis, Rheumatoid , G-Protein-Coupled Receptor Kinase 2 , Hypoxia-Inducible Factor 1, alpha Subunit , Synoviocytes , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Hypoxia/genetics , Hypoxia/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Synoviocytes/immunology , G-Protein-Coupled Receptor Kinase 2/antagonists & inhibitors , G-Protein-Coupled Receptor Kinase 2/genetics , G-Protein-Coupled Receptor Kinase 2/immunology
15.
Front Immunol ; 13: 980805, 2022.
Article En | MEDLINE | ID: mdl-36091038

Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.


Anti-Citrullinated Protein Antibodies , Arthritis, Rheumatoid , Periodontitis , Protein-Arginine Deiminases , Anti-Citrullinated Protein Antibodies/genetics , Anti-Citrullinated Protein Antibodies/immunology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Autoantibodies/genetics , Autoantibodies/immunology , Humans , Periodontitis/complications , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/microbiology , Porphyromonas gingivalis/enzymology , Porphyromonas gingivalis/genetics , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/immunology
16.
Psychiatry Res ; 317: 114812, 2022 11.
Article En | MEDLINE | ID: mdl-36058039

The negative relationship between schizophrenia (SCZ) and rheumatoid arthritis (RA) has been observed for 85 years, but the mechanisms driving this association are unknown. This study analyzed differences in profiles of cytokines (IL-1ß, IL-Ra, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IFNγ, TNFα), selected genes (HLA-DRB1, IL1RN, HP2), and antibodies related to gluten sensitivity (AGA-IgG, AGA-IgA), celiac disease (tTG), and systemic autoimmunity (ANA, anti-CCP, RF) in 40 subjects with SCZ, 40 with RA, and 40 healthy controls (HC). HLA-DRB1*04:01 alleles were enriched in persons with SCZ and RA compared with HC, and the HP2/HP2 genotype was 2-fold more prevalent in AGA/tTG-positive versus negative SCZ patients. Patients with SCZ demonstrated 52.5% positivity for any of the antibodies tested, compared to 90% of RA patients and 30% of HC. Cluster analysis of the cytokines revealed three clusters: one associated with SCZ marked by high levels of IL-1Ra, one associated with HC, and one associated with both SCZ and RA marked by elevated levels of IFNγ, TNFα, and IL-6. These analyses suggest that stratification of SCZ patients by cytokine profile may identify unique SCZ subgroups and enable the use of currently available cytokine-targeted treatment strategies.


Arthritis, Rheumatoid , Schizophrenia , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Autoantibodies , Cytokines , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Interleukin-6 , Peptides, Cyclic , Schizophrenia/genetics , Schizophrenia/immunology , Tumor Necrosis Factor-alpha
17.
Front Immunol ; 13: 932627, 2022.
Article En | MEDLINE | ID: mdl-35967356

Background: Despite immune cell dysregulation being an important event preceding the onset of rheumatoid arthritis (RA), the phenotype of T and B cells in preclinical RA is less understood. The aim of this study was to characterize T and B cell populations in RA patients and their autoantibody (aAb) negative and positive first-degree relatives (FDR). Methods: Cryopreserved peripheral blood mononuclear cells (PBMCs) collected at scheduled visits from aAb-(n=25), and aAb+ FDR (n=10) and RA patients (n=13) were thawed and stained using optimized antibody cocktails as per a specific 13-color T or B cell panel. Immunophenotyping was performed using a Cytoflex LX (Beckman-Coulter) flow cytometer and FlowJo software was used for analyzing the frequency of immune cell populations. Results: Multicolor flow cytometry experiments identified an increased TIGIT expression in circulating lymphocytes of aAb+ FDR and RA patients, relative to aAb- FDR (P<0.01). These TIGIT+ T cells exhibited a memory phenotype and expressed high levels of PD-1, ICOS, HLA-DR, CXCR3 and CXCR5. Moreover, increased TIGIT+ CD4 T cell frequency correlated with the frequency of PD-1+ CD4 T cells (r = 0.4705: P = 0.0043) and circulating levels of ACPA and RF. We also identified a decreased frequency of CD27+IgD- switched memory B cells in RA patients (P < 0.01), while increased frequency of TIGIT+ CD4 T cells in FDR correlated with the frequency of PD1+PTEN+ B cells (r = 0.6838, P = 0.0004) and autoantibody positivity (P = 0.01). Conclusion: We demonstrate TIGIT as a distinct CD4 T cell marker for differentiating aAb- FDR from aAb+FDR and might play a critical role in regulating T and B cell crosstalk in preclinical RA.


Arthritis, Rheumatoid , CD4-Positive T-Lymphocytes , Receptors, Immunologic , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Autoantibodies/genetics , Autoantibodies/immunology , CD4-Positive T-Lymphocytes/immunology , Humans , Leukocytes, Mononuclear/immunology , Programmed Cell Death 1 Receptor/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , T-Lymphocyte Subsets/immunology
18.
Front Immunol ; 13: 913830, 2022.
Article En | MEDLINE | ID: mdl-35967391

Objective: MALT1 regulates immunity and inflammation in multiple ways, while its role in rheumatoid arthritis (RA) is obscure. This study aimed to investigate the relationship of MALT1 with disease features, treatment outcome, as well as its effect on Th1/2/17 cell differentiation and underlying molecule mechanism in RA. Methods: Totally 147 RA patients were enrolled. Then their blood Th1, Th2, and Th17 cells were detected by flow cytometry. Besides, PBMC MALT1 expression was detected before treatment (baseline), at week (W) 6, W12, and W24. PBMC MALT1 in 30 osteoarthritis patients and 30 health controls were also detected. Then, blood CD4+ T cells were isolated from RA patients, followed by MALT1 overexpression or knockdown lentivirus transfection and Th1/2/17 polarization assay. In addition, IMD 0354 (NF-κB antagonist) and SP600125 (JNK antagonist) were also added to treat CD4+ T cells. Results: MALT1 was increased in RA patients compared to osteoarthritis patients and healthy controls. Meanwhile, MALT1 positively related to CRP, ESR, DAS28 score, Th17 cells, negatively linked with Th2 cells, but did not link with other features or Th1 cells in RA patients. Notably, MALT1 decreased longitudinally during treatment, whose decrement correlated with RA treatment outcome (treatment response, low disease activity, or disease remission). In addition, MALT1 overexpression promoted Th17 differentiation, inhibited Th2 differentiation, less affected Th1 differentiation, activated NF-κB and JNK pathways in RA CD4+ T cells; while MALT1 knockdown exhibited the opposite effect. Besides, IMD 0354 and SP600125 addition attenuated MALT1's effect on Th2 and Th17 differentiation. Conclusion: MALT1 regulates Th2 and Th17 differentiation via NF-κB and JNK pathways, as well as correlates with disease activity and treatment outcome in RA.


Arthritis, Rheumatoid , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , NF-kappa B , Osteoarthritis , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Cell Differentiation , Humans , Leukocytes, Mononuclear/immunology , MAP Kinase Signaling System/immunology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Osteoarthritis/metabolism , Th17 Cells/immunology , Th2 Cells/immunology , Treatment Outcome
19.
Front Immunol ; 13: 930112, 2022.
Article En | MEDLINE | ID: mdl-35774784

The risk to develop ACPA positive rheumatoid arthritis (RA), the most destructive type of autoimmune arthritis, is carried by HLA-DRB1 alleles containing a 5 amino acid motif: the shared epitope (SE). RA is preceded by the emergence of disease specific anti citrullinated protein antibodies (ACPA). SE positive HLA-DRB1 alleles are associated with ACPA and ACPA positive RA, not with ACPA negative RA, suggesting that ACPA contribute to the pathogenesis of RA. Understanding how HLA-DRB1 genotypes influence ACPA could lead to a curative or preventive treatment of RA. The "Shared epitope binds citrullinated peptides " hypothesis suggests that RA associated HLA-DR alleles present citrullinated peptides to T cells that help ACPA producing B cells. The "Hapten carrier model" suggests that PAD4 is the target of the T cells which help ACPA specific B cells through a hapten carrier mechanism in which PAD4 is the carrier and citrullinated peptides are the haptens. Direct binding assay of citrullinated peptides to purified HLA-DR molecules does not support the "shared epitope binds citrullinated peptides" hypothesis. The Odds Ratios to develop ACPA positive RA associated with each of 12 common HLA-DRB1 genotypes match the probability that the two HLA-DR molecules they encode can bind at least one peptide from PAD4, not from citrullinated fibrinogen. Thus, PAD4 tolerization might stop the carrier effect and switch off production of ACPA.


Arthritis, Rheumatoid , Autoantibodies , Citrullination , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Autoantibodies/biosynthesis , Epitopes , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Haptens/genetics , Haptens/immunology , Humans , Peptides/genetics , Peptides/immunology , Peptides, Cyclic/genetics , Peptides, Cyclic/immunology
20.
Adv Rheumatol ; 62(1): 25, 2022 07 11.
Article En | MEDLINE | ID: mdl-35820936

BACKGROUND: Phospholipase C-like 1 (PLCL1), a protein that lacks catalytic activity, has similar structures to the PLC family. The aim of this research was to find the function and underlying mechanisms of PLCL1 in fibroblast-like synoviocyte (FLS) of rheumatoid arthritis (RA). METHODS: In this study, we first analyzed the expression of PLCL1 in the synovial tissue of RA patients and K/BxN mice by immunohistochemical staining. Then silencing or overexpressing PLCL1 in FLS before stimulating by TNF-α. The levels of IL-6, IL-1ß and CXCL8 in FLS and supernatants were detected by Western Blot (WB), Real-Time Quantitative PCR and Enzyme Linked Immunosorbent Assay. We used INF39 to specifically inhibit the activation of NLRP3 inflammasomes, and detected the expression of NLRP3, Cleaved Caspase-1, IL-6 and IL-1ß in FLS by WB. RESULT: When PLCL1 was silenced, the level of IL-6, IL-1ß and CXCL8 were down-regulated. When PLCL1 was overexpressed, the level of IL-6, IL-1ß and CXCL8 were unregulated. The previous results demonstrated that the mechanism of PLCL1 regulating inflammation in FLS was related to NLRP3 inflammasomes. INF39 could counteract the release of inflammatory cytokines caused by overexpression of PLCL1. CONCLUSION: Result showed that the function of PLCL1 in RA FLS might be related to the NLRP3 inflammasomes. We finally confirmed our hypothesis with the NLRP3 inhibitor INF39. Our results suggested that PLCL1 might promote the inflammatory response of RA FLS by regulating the NLRP3 inflammasomes.


Adaptor Proteins, Signal Transducing , Arthritis, Rheumatoid , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphoinositide Phospholipase C , Synoviocytes , Adaptor Proteins, Signal Transducing/immunology , Animals , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Fibroblasts/metabolism , Humans , Inflammasomes/metabolism , Inflammation , Interleukin-6/immunology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Phosphoinositide Phospholipase C/immunology , Synoviocytes/immunology , Synoviocytes/pathology
...